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1 Executive Summary 

 

The industrial adoption of multicore computing has forced legacy code owners to choose 

between two undesirable choices: either manually parallelize code at significant cost or 

simply accept significant performance slowdown (because multicore processors typically 

tend to be clocked slower than their uniprocessor predecessors).  If legacy codes cannot 

be sped up, multicore adoption can jeopardize decades of low-cost, continuous 

application performance improvements, a key enabler for substantial progress we have 

made in science and commerce.  The goal of this seedling was to study the suitability of 

certain automatic parallelization techniques for parallelizing legacy codes. 

 

The main thrust of our investigation was to measure the legacy binaries for evidence of 

latent parallelism in repeated instruction sequences (n-grams). The intent was to 

manually parallelize repeating code sequences, n-grams, and then build tools to 

automatically apply parallelizations to the entire code base. While we find that n-gram 

(i.e., repeated instruction sequences) parallelism does exist, it is not easily leveraged.  

Such n-gram analysis can, however, assist compiler-based parallelism.  

 

Specifically, our findings show that: 

 

- Static binary analysis for repeated instruction sequences has limited utility. 

Although we find many repeatable code sequences, our results confirm the 

limited use of statically identifying parallelizable sequences due to complexities 

of modern code compilation.  

- Dynamic analysis of repeated instruction sequences offers little speedup. 

Although we found ample instruction-level parallelism (ILP) in legacy code by 

using an ideal machine (limited only by data dependencies and not physical 

resources), repeated code sequences show little ability to be parallelized on real 

hardware. 

- Semantic pattern-matching shows progress. Matching parallelizable code 

patterns shows promise: we developed a prototype system that maps x86 code 

segments to a representation that is useable in a compiler phase that transforms 

code into a speculatively parallel version. This approach shows ample 

parallelism. 

- Input data patterns can reveal dependencies and direct the extraction of 

parallelism. We find that one very promising direction for future work is to 

consider parallelization of legacy code under specific partial input data.  An 

initial study shows significant gains. 
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2 Introduction 

 

The rise of commodity multicore computing has forced many organizations to re-evaluate 

current programming paradigms and software execution models. While multicore machines 

offer exciting possibilities for speeding up naturally parallelizable tasks, the research 

community still faces a considerable number of fundamental questions in its exploration of 

viable alternatives for effective and efficient use of these resources. Furthermore, practitioners 

in a variety of industry and government organizations find themselves grappling with the 

practical issues stemming from the need to take advantage of the power provided by now-

commodity multicore hardware --- a power for which the extensive legacy computing base 

seems ill-matched, since it was not designed to run on more than a single CPU or at best, a 

Symmetric Multiprocessing (SMP) machine with only a few independent processors. 

 

Parallel computing is enjoying a rebirth. At this early stage, however, the nature and form of 

parallel computing elements, compilers, libraries, and programming methods are far from a 

foregone conclusion. Resurgent research efforts into parallel computing seem driven by and 

tightly coupled to the advent of multicore processor packages in commodity desktop and 

server hardware. This hardware offers a boon of readily available computational resources to 

support parallel workloads. The hope seems to be that research efforts can create methods that 

automatically identify and extract task level parallelism suitable for execution on these 

machines. Two fundamental issues exist: 

 

1) How can we automatically convert a program written to execute on a single core to 

parallel execution on multiple cores? What kinds of methods do we need to study to 

develop a program, runtime framework, or set of libraries that can support such 

automatic translation? 

 

2) How can we enable current and legacy software to efficiently leverage the rapid pace 

of hardware advance? CPU computing power doubles roughly every year, and packing 

exponentially more cores on a chip is a stated goal of major hardware vendors. The 

pace of most software development and certification efforts typically lags such 

increases in hardware capacity. What is the best way to take advantage of such future 

hardware advances in the software development lifecycle? 

 

The goals of our specific project were to propose, define, and take measurements of legacy 

binaries to see whether there is evidence of latent parallelism. Furthermore, we determined to 

use the measures to help define a set of methods for automatically extracting parallel 

execution from legacy binaries. 
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3 Methods, Assumptions, and Procedures 

 

This report summarizes the highlights of our progress and results. Our activities have 

primarily focused on two efforts: (1) collections and analysis of data (memory allocation 

& access patterns, instruction sequences) traces and (2) understanding the outline and 

structure of a procedure for identifying parallelizable patterns in binary code. 

 

To this end, we have built a set of program instrumentation tools (using Pin, 

www.pintool.org) to collect both static and dynamic instruction n-gram traces for 

Microsoft Windows and Linux user-level software applications. We have also collected 

Microsoft Windows load/store profiles for Microsoft Word, Excel, and Powerpoint, 

along with a video transcoder. We collected user-driven profiles of Microsoft Windows 

events. We have demonstrated a proof-of-concept speedup of x86 code in the GNU 

Image Manipulation (GIMP) graphics program for a variety of image transformations 

(for example, we can speed up one filter from seventy seconds of execution time to ten 

seconds of execution time).  We have built a prototype system for understanding how to 

map parallelizable execution patterns by translating x86 traces to the Low-Level Virtual 

Machine (LLVM) language. Finally, we have collected malloc-based profiles of a variety 

of Linux applications to help us see if understanding the data structures or other high-

level objects in memory can inform choices about associating tasks or threads with 

certain high-level data structures (as opposed to specific virtual memory addresses). We 

have coupled this latter work with an understanding of related work from theoretical 

Computer Science on the topic of topological sorting and ordering of resource and data 

requests. 

 

Since our goal is to estimate the potential for automatic hardware/software parallelization 

of legacy codes on multicore platforms, we developed a methodology suitable for this 

task. We focused our data collection and analysis on legacy codes and benchmarked both 

Microsoft and Linux applications (e.g., Firefox, Microsoft Word, Microsoft Internet 

Explorer). We first estimated the potential for parallelism, then measured the code 

sequences for n-gram based parallelism, and finally undertook a dependence-based 

measurement approach. 
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4 Results and Discussion 

 

We summarize our main findings here and expand on them with supporting data and 

figures later in this section. We have observed that n-gram approaches provide a coarse 

measure of self-similarity but cannot easily be leveraged for parallelization patterns.  

Instead, we have come to the conclusion that parallelization templates offer a target for 

the translation of x86 binary instruction stream to LLVM. We also note that a user-

centered viewpoint offers a way to focus the search for parallelizable code tasks on 

"high-pain" areas of execution: sections of code that cause a perceptible delay for a user. 

 

4.1 Specific Findings 

 

We find that: 

 

- Limited power of static binary analysis. Our results confirm general 

expectations that simple static analysis of code sequences in legacy code reveals 

little to no opportunity for automated parallelization.  The complexity of the 

underlying compilation framework and instruction set provides a vast array of 

options of rendering binary code for the same source code. We abstracted the 

static analysis to consider classes of instructions rather than exact instruction 

sequences and yet little additional parallelism was revealed.  

- Analysis of dynamic instruction sequences also offers little speedup. We 

extended our analysis to consider dynamically executed instruction sequences and 

applied the same analytical methods to detect repetitive instruction sequences. 

The outcomes were as poor as the original simple static analyses. 

- Semantic pattern-matching shows progress. An alternative approach was 

investigated following the methods developed by David August and his group to 

find what we may call "pragmas" that specify how a pattern of instructions in a 

code sequence can be rewritten or transformed into a parallelized version. This 

area is ripe for exploitation and further development. Ample parallelism can be 

discovered in legacy code using this approach. 

- Input data patterns reveal data dependencies and help organize the 

extraction of task level parallelism. One particularly intriguing future research 

path is to consider parallelization of legacy code under particular input data. It is 

the input data to a complex application that ultimately drives the execution paths 

of the application and the potential parallelization of those paths of execution. 

Some work along these lines was explored late in the seedling research program; 

much more work needs to be done to fully develop this line of thought.  

 

During the course of the research project, we developed a number of tools and artifacts, 

including: 

 

- A Pin-based tool for extracting both static and dynamic instruction sequences 
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- A Pin-based tool that provides an analysis and debugging environment based on 

data-structure representations 

- A host-based auditing sensor that monitors user patterns (such monitoring 

provides one way of focusing on parts of an application that a user commonly 

executes, and thus may be interesting targets for parallelization or speedup). 

- A Pin-based tool for extracting instruction sequences and translating them to the 

LLVM representation in order to bridge the gap between Princeton’s 

parallelization pattern-matching compiler and the x86 machine language. 

 

4.2 Potential Parallelism in Legacy Codes 

To estimate the potential parallelism in a body of code, we devised a method to statically 

analyze legacy binary code sequences by counting the number of repetitive n-gram 

subsequences that may be executed in parallel. An n-gram is a contiguous sequence of n 

instructions. The static analysis scans the code and counts the number of distinct 

instruction sub-sequences of size n, varying n. The analysis sought to answer the 

following questions. Are there instruction subsequences that repeat often enough so that 

parallel execution would speed up the program significantly? Is it easy to dispatch these 

repeated subsequences to execute efficiently on multicore architectures to realize this 

inherent parallelism? Furthermore, how many distinct parallelizable subsequences exist? 

Our measurements indicate that there are instruction sequences that repeat often enough, 

but they are not easily profitably parallelized across cores, even though many distinct 

parallelizable sequences exist.  

 

We measured a set of third-party commodity legacy binaries, including Microsoft 

Notepad, Microsoft Word, and a video transcoding program (all on Microsoft Windows 

using Pin). As we can see in the Figure 1, there is ample instruction level parallelism in 

legacy codes given an “infinitely parallel” machine (i.e., a machine constrained only by 

dataflow constraints, not physical resources). Although this result is encouraging, the 

question of how to automatically extricate it on real multicore chips remains a daunting 

challenge.  

 

In Figure 1, the vertical axis shows the fraction of dynamic instructions that can execute 

each cycle assuming that execution is constrained only by dataflow constraints. The 

horizontal axis shows the number of time steps required to execute the program. In 

considering the execution of Notepad on this “ideal” machine, the chart shows that about 

54% of the dynamic instructions can execute in the first time step of the program! 

Thereafter, 56% execute within 10 time steps, 58% within 100 time steps and all of the 

program instructions can execute within 100000 time steps. Overall, this works out to a 

limit of instruction level parallelism of 93 instructions per cycle for Microsoft Notepad. 

Trends are similar for other programs; the ILP limit for Microsoft Word is about 47, and 

for transcoding it is 165. The question remains how to extract such ILP from legacy 

binaries in the absence of a machine with an unbounded amount of hardware resources 

(i.e., a machine that is restricted by the realities of on-chip cache sharing and inter-core 

communication). 
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Figure 1.  Dynamic Instructions Ready to Execute 

4.3 Limited Power of Static and Dynamic Binary Analysis 

 

Our experiments showed that there is some repetition but the length of the repetitive 

instruction n-grams rarely exceeds more than 11 instructions. Current inter-core 

communication latencies are not favorable for parallelizing these few instructions across 

cores. We think, however, that instruction repeatability can be used to synthesize special 

purpose functional units (accelerators) to speed up these sequences within one core. This 

is useful because ultimately the time spent in sequential regions will limit the maximum 

exploitable parallelism (Amdahl’s law). In considering our measurements of dynamic n-

grams, we see that there isn’t a single dominant pattern or larger patterns in these 

benchmarks, which limits the applicability of n-grams to parallelizing the applications we 

studied.    

 

These findings imply three results. First, n-gram sequences cannot be effectively 

parallelized across cores because of inter-core latencies. Second, hardware accelerators 

that speed up the execution of n-gram sequences within cores may be useful. Finally, 

without the use of such accelerators, program speedup is limited by the time spent inside 

n-gram instruction sequences themselves. 

 

4.4 Semantic Pattern-matching Shows Progress 

 

Our initial results indicated that using manual emulation of a compiler, scalable 

performance was found across all C programs of SpecINT2000, a benchmark suite of 

notoriously sequential programs.  By exploiting the pipeline parallelism lurking in 

sequential applications and using the power of targeted speculation, the Decoupled 

Software Pipelining (DWSP) (see http://liberty.princeton.edu/Research/DSWP/ for an 

overview and links to related research papers) approach demonstrated the possibility of 
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automatically extracting long-running, concurrently executing, streaming threads from 

unmodified and minimally modified (on the order of 60 lines in 500,000) sequential C 

programs.     
 

In contrast to DOALL and DOACROSS, which partition the iteration space across 

threads, DSWP operates by partitioning the loop body into stages of a pipeline, with each 

stage executing within a thread. These stages are formed in such a way that dependences 

among them flow in a single direction without any feedback loop. The pipeline stages are 

executed in parallel on different threads, thus forming a pipeline of threads. Since it 

keeps dependence recurrences local to a thread, DSWP is highly tolerant of the inter-

processor communication latency, as it avoids communication latency on the critical 

path. DWSP has shown a geometric-mean speedup of 5.5X across 11 SpecINT2000 

programs using up to 32 threads, as shown in Figure 2 [BVZJA07].  

 

 

Figure 2. Speedups Obtained With DSWP and Derivative Techniques 

 

We have been able to increase our speedups even further by using DSWP as an enabling 

transformation for various loop parallelization techniques such as DOALL, LocalWrite 

and SPECDoall. Unlike DSWP, which tries to maximize performance by balancing the 

stages of the pipeline, a newly developed optimization DSWP+, tries to assign work to 

maximize performance by balancing the stages of the pipeline. DSWP+ tries to assign 

work to stages so that they can be further parallelized by other techniques. After 

partitioning DSWP+ allocates enough threads to the parallelizable stages to create a 

balanced pipeline. Our results show that DSWP+ yields more performance than DSWP 

and other parallelization techniques when applied separately. 
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4.5 Input-Dependent Parallelism 

 

Prior art has generally focused exclusively on static parallelization of program code. 

However, we found that some applications cannot be effectively parallelized at compile-time 

because the input set contains the bulk of the application definition.  One example of an 

application of this type is an interpreter.  In these applications, the input set contains the 

specification of the actual work.  In these situations, the scope of parallelization needs to be 

expanded to include the input program to capture the actual parallelism. 

 

To demonstrate the problem with interpreters more concretely, consider the example Perl 

program in Figure 3. The Perl code in Figure 3(a) increments all elements of an array a by 1. 

This is clearly a parallel loop where all iterations can be executed concurrently. However, 

Figure 3(b) shows a simplified version of the interpreter loop inside of Perl.  Each iteration 

decodes the next Perl operation to execute and performs the actual execution by calling the 

appropriate processing function. This loop is inherently sequential, as it must keep track of 

two pointers, the fp pointer that specifies the position in the Perl program and the data pointer 

that specifies the position in the actual data that is being operated upon. Each of these pointers 

is updated every iteration to maintain the current position in both the Perl program and input 

data. As a result, the inherently parallel work in this input is completely sequentialized 

through the use of a general interpreter. 

 

 

 

Figure 3. An Example to Illustrate the Problems With Parallelizing an Interpreted Program. 

 

To reveal the true parallelism, the Perl program execution, rather than the interpreter, must be 

analyzed in more depth. At run-time, the sequence of operations (represented as Perl 

functions) shown in Figure 3(c) is applied to each array element a. For each element, 

operation B, followed by two instances of operation C, and finally operation D are applied. 

This sequence is then repeated for each array element until the input is exhausted. Note that 

each iteration of the loop in Figure 3(c) is independent with the exception of the control 

dependence from D4 that determines if there are more array elements to process. Thus, there 

is an opportunity for a run-time system to discover such instruction sequences and parallelize 

the interpreted application using static methods such as speculative DOALL or DSWP. 

 

To test the viability of this approach, we manually applied dynamic speculative DOALL 

parallelization to the dynamic dependence graph during execution of the 253.perlbmk 

benchmark on three reference inputs.
1
  Each Perl script is dominated by one loop body. The 

                                                           
1 The inputs were diffmail.pl, perfect.pl, and splitmail.pl. 
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result was that performance gains ranging from 1.4-2.6x were observed. This compares 

favorably to the best static parallelization performance gains of 15%. 

 

In these programs, no amount of profiling can help the compiler determine which set of 

parallelizations are going to be effective at run time. In fact, the parallelism available may be 

different for each and every input. To address this problem (or to capture this otherwise lost 

opportunity), we recommend the development of run-time thread extraction methods 

specifically for these kinds of programs. 

 

While there are many challenges to overcome to achieve dynamic threading of input-

dependent codes at run-time, the basic idea is simple. During execution, a subset of the 

program dependence graph (PDG) materializes. This dynamic PDG can then be parallelized 

using the same techniques applied statically. The key is in minimizing the amount of work 

necessary at run-time. We recommend that this be done in three ways. 

 

First, code that is successfully parallelized statically does not need to be considered. Loops 

that are found or made to be DOALL, Speculative-DOALL, Parallel-Stage DSWP, or 

Speculative Parallel-Stage DSWP by the static pass should not be considered since each of 

these loop types generally provides scalable parallelism in practice. This will relieve the 

system from considering many, if not most, program loops. 

 

Second, the dynamic hot-path PDG is only a very small subset of the dynamic and static 

PDGs. Using the 90-10 rule, we might expect only 10% of the code hot enough to be 

considered important. This hot PDG further consists of two parts: dependences that always 

exist (or always do not exist) when the code is executed and dependences that are highly input 

dependent.  Dependences of the first type only require hot control path detection that is 

known to be lightweight.  Dependences of the second type should be identified a priori for 

monitoring. 

 

Finally, run-time transformations need not be as powerful as their static counterparts, and 

much of their work can be partially evaluated statically.  For example, while the static PDG 

generator must start with the code to generate the PDG, the dynamic PDG generator can start 

with the static PDG and simply mask out unrealized dependences. Analogs exist in the 

partitioning, transformation, and code generation process. 

 

Each of these ways should be explored to reduce the cost of run-time threading, in addition to 

looking for other ways to accomplish this goal. 

 

4.6 Resource Requests Re-orderings 

 

We created a measurement tool that observes a program's execution in a real-time 

manner and dynamically measures the potentials for safely re-ordering resource requests 

that the program makes. This goal is the first step toward dynamically parallelizing 

legacy binary programs. The hypothesis is that the requests to allocate and free resources 

and data structures are potentially over-constrained. These over-constrained 
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specifications may be malleable:  the machine might be able to split the total resource 

request sequence into subsets that can be executed in parallel as independent threads. 

This hypothesis is based on our observation dealing with the commutative function 

parallelization pattern. 

 

We consider a variant of the classic online topological ordering problem as the abstract 

model for this application. We have a directed graph G = (V, E), where G is fixed 

initially. New vertices and edges are added and deleted over time, and we maintain a 

topological order of all vertices in the graph. Each vertex represents a chunk of allocated 

memory. The edges among vertices represent the dependency between vertices such that 

for any edge (i, j) in E, j cannot be executed until i has finished. Given such a graph, any 

cut (A, B) specifies an arrangement of vertices on the multicores. (A “cut” C is a subset 

of edges of the graph such that after we remove these edges, the vertices are separated 

into two parts so that any two vertices in these two parts are not connected.) We can use 

each vertex to represent each memory allocation operation. An operation that frees 

memory corresponds to removing one vertex from the graph and its associated edges. 

Also, as long as one topological ordering is given, any cut on the graph is a safe way to 

parallelize binary programs.  

 

A topological sort of a directed acyclic graph (DAG) is a linear ordering of all its vertices 

such that if the graph contains an edge (u, v), then u appears before v in the ordering. If 

the graph contains a cycle, then no linear ordering is possible. There exist well-known 

algorithms for computing the topological ordering of a DAG in time O(m + n) in an 

offline setting [T72, KS74]. These offline algorithms apply depth first search (DFS): call 

DFS to compute the finishing time for each vertex and then as each vertex is finished, 

insert it onto the front of a linked list. The final list would be the linear topological order 

for those vertices. 

 

Algorithms running in quadratic time have been found for online topological ordering 

[KB06, AFM08, BFG09]. Our goal in this analysis was to update and maintain the 

topological order over time. We have not found any existing work dealing with this task, 

especially when we combine topological ordering with maintaining cuts in an online 

manner. 

 

Topological Ordering Related Work Since topological ordering of resource requests 

provides a strong underlying theoretical guide to data-centric efforts to automatically 

extract parallelism, we provide a brief annotated overview of the relevant literature in 

this space. This literature review should serve as a reference for understanding what 

limits have been reached by the theoretical Computer Science community in considering 

the problem of online (i.e., dynamic) topological sorting of unpredictable patterns of 

resource requests. 

 

In the online variant of the topological sorting problem, the edges of the DAG are not 

known in advance but are given one at a time. Each time an edge is added to the DAG, 

we are required to update the topological order. The objective is to minimize the total 

running time subject to various problem constraints. More specifically, the goal is to 
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maintain a data structure that supports two operations: (1) edge insertions, in which a 

new edge is added to the graph; and (2) queries of the form: “Does a vertex u come 

before another vertex v in the topological ordering?” 

 

Incremental topological ordering [AFM08] considers the problem of maintaining a 

topological ordering subject to dynamic changes to the underlying graph. The adversary 

adds m edges to the graph, one edge at a time, and no edges will be deleted. Incremental 

topological ordering has arisen in a variety of contexts. For example, it is required for 

incremental evaluation of computational circuits [AHRSZ90], deadlock detection [B90], 

incremental compilation [MNR93, OLB92] where a dependency graph between modules 

is maintained to reduce the amount of recompilation performed when an update occurs, 

and source code analysis [PK06] where the aim is to statically determine the smallest 

possible target set for all pointers in a program and as a subroutine of an algorithm for 

incremental evaluation of computational circuits [AHRSZ90]. It is also used as an online 

cycle detection routine in pointer analysis [PKH03], and the core of constraint systems 

for stochastic search such as those featured in Comet [MV02]. 

 

The naive way of computing an incremental topological order is that in each time slice, 

we recalculate the new ordering after each edge insertion with the offline algorithm 

which takes O(m
2
  + mn) time in total (where m is the number of edges and n is the 

number of vertices.) Marchetti-Spaccamela et al [MNR96] gave the first nontrivial 

solution, an algorithm that can insert m edges in O(mn) time, giving an amortized time 

bound of O(n) per edge instead of the trivial O(m). This result provides the best 

amortized time known so far. 

 

The only nontrivial lower bound for online topological ordering is due to Ramalingam 

and Reps [RR94], who show that an adversary can force any algorithm to perform (n 

log n) vertex relabeling operations while inserting n-1 edges (and creating a chain). Thus, 

if the labels are maintained explicitly, this implies an (n log n) bound on runtime. 

Pearce and Kelly [PK06] gave an algorithm that they showed to be fast in practice on 

random sparse graphs, but that is provably worse than that Alpern et al. algorithm in the 

worst case. Kavitha and Mathew [KM07] gave a slightly better variant. Recently, 

Ajwani, Friedrich and Meyer [AFM08] present a simple algorithm which maintains the 

topological order under an online edge insertion sequence, in O(n
2.75

) time, independent 

of the number m of edges inserted. For dense DAGs, this is an improvement over the 

previous best result [KB06]. They also demonstrate empirically that this algorithm 

clearly outperforms [KB06], [MNR96], [AHRSZ90], and [PK06] on a certain class of 

hard sequences of edge insertions, while being at most a factor of 2 to 4 away on random 

edge sequences leading to complete DAGs. 

  

Most recently, Bender, Fineman, and Gilbert [BFG09] present a new algorithm that has a 

total cost of O(n^2 log n) for maintaining the topological ordering throughout all the 

edge additions. At the heart of the algorithm is a new approach for maintaining the 

ordering. Instead of attempting to place the nodes in an ordered list, they assign each 

node a label that is consistent with the ordering, and yet can be updated efficiently as 

edges are inserted. When the graph is dense, the algorithm is more efficient than existing 
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algorithms mentioned above. The idea used in their algorithm is quite different from 

previous algorithms. Typically, a topological ordering is maintained explicitly as either a 

linked list or an array. When adding an edge (u,v), the algorithm first checks whether u 

appears before or after v in the existing topological ordering; if u appears after v, then the 

array or linked list is updated so that u precedes v in the ordering, as is required by the 

insertion of edge (u,v). During the insertion, the algorithm modifies only vertices in the 

“affected region” of the list/array, i.e., those vertices that lie between v and u. The key to 

these algorithms is to efficiently discover which vertices in the affected region need to be 

moved. 

 

This work is the only one we notice that the data structure can readily support edge 

deletions as well as edge insertions; however, performance guarantees apply only to 

executions consisting only of insertions. 
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5 Conclusions 

 

If legacy codes cannot be sped up, multicore adoption can jeopardize decades of low-

cost, continuous application performance improvements, a key enabler for substantial 

progress we have made in science and commerce.  The goal of the seedling was to study 

the suitability of automatic parallelization techniques for parallelizing legacy codes. 

While we find that n-gram (i.e., repeated instruction sequences) parallelism does exist in 

the legacy binaries we studied, this inherent parallelism is not easily leveraged on 

mulitcore architectures. Such n-gram analysis can, however, assist compiler-based 

parallelism. Furthermore, we believe that focusing on the design of tools that examine 

input data patterns can provide valuable guidance in the extraction of high-order 

parallelism. Indeed, effective parallelism in code will vary for different inputs. 

Understanding how one many transform input data to maximize available parallelism is 

an ripe for deeper analysis.  
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6 Recommendations 

 

We have identified a number of promising paths for extracting parallelism from legacy 

code by leveraging the relationship between compilers and microarchitectures.  In 

particular, introducing accelerators for n-grams and hardware dependency analysis can 

help aid compiler-based parallelization. Furthermore, we believe that the nature of data 

consumed by legacy applications can provide strong hints as to the data dependencies 

that must be respected by efforts to extract task level parallelism.  

 

We believe that answering the following two questions will aid in future attempts to 

automatically extract parallelism, and we believe that this approach is much more tenable 

than more invasive approaches that involve refactoring the legacy code in question. First, 

is it possible to derive or predict data dependencies at runtime based on an understanding 

of the high-level data organization of the application input (e.g., records, structures, 

objects, complex data structures, abstract data types)? Second, can we create “data 

compilers” that partition, transform, and convert data into portions that minimize data 

dependencies? 
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List of Acronyms, Abbreviations, and Symbols 

 

Acronym Description 

ILP Instruction Level Parallelism 

DSWP  Decoupled Software Pipelining 

PS-DSWP  Parallel Stage Decoupled Software Pipelining  

LLVM Low-Level Virtual Machine 

DAG Directed Acyclic Graph 

SMP Symmetric Multiprocessing 

PDG Program Dependence Graph 

GIMP GNU Image Manipulation Program 

LLVM Low-Level Virtual Machine 

CP Critical Path 

 

 

 

 

 

 

 


